鋼製卷尺補正方法

鋼製巻尺補正方法

当社の鋼製巻尺は、日本産業規格JIS1級(JIS B 7512)に定める「長さの許容差」の精度内の品質です。しかしこの精度は、平坦面上にて温度20℃でテープの標準張力を掛けた場合の測定で、この測定条件以外でで使用の場合は、温度補正、たるみ補正、張力補正を行う必要があります。

表示目盛	許容差	表示目盛	許容差
0~2m	±0.4mm	0~50m	±5.2mm
0~5m	±0.7mm	0~60m	±6.2mm
0~10m	±1.2mm	0~70m	±7.2mm
0~20m	±2.2mm	0~80m	±8.2mm
0~30m	±3.2mm	0~90m	±9.2mm
0~40m	±4.2mm	0~100m	±10.2mm

計算式

①温度補正値 Ct

 $Ct = Q \times (T-20) \times \ell$

L = ℓ+Ct T: 測定時の温度 °C

②張力補正值 **C**p

(平垣面上に巻尺を置いて張力をかけた時)

 $Cp = \frac{1}{F \cdot A} \times (P - P_0) \times \ell$ $L = \ell + Cp$ P: 測定時の張力 N

 L = 正しい距離
 mm

 ℓ = 巻尺の読取り数字
 mm

 T = 測定時の温度
 ℃

 P = 測定時の張力
 N

 P₀ = 標準張力
 N

 α = 線膨張係数
 0.0000115/℃
 0.0000103/℃

 E = ヤング率
 206,000N/mm²
 201,000N/mm²

③たるみ補正値

(巻尺を2点で支え、途中がたるんだ状態の時、②に更にこの補正をする)

 $Ch = -\frac{W^2}{24p^2} \times \ell^2$

 $L = \ell + Ch$

④製品による設定値

	単位	カクロング	テクロン10 スピードテクロン10	ユニロング	テクロン13 スピードテクロン13	ステンレス スピードテクロン10
P。= 標準張力	N(ニュートン)	20	50	100	100	50
A = テープ素材の断面積	mm²	1.25	1.35	2.34	2.34	1.35
W = テープ単位当りが及ぼす力	N/mm	0.000102	0.000136	0.000187	0.000228	0.000135

5 実施計算例

Q. 標準張力100Nの巻尺ユニロングで、測定時温度30℃、 測定時張力150Nの条件下に、空中測定したところ25m の距離をこの巻尺で読み取った。この時の正しい距離は いくらか。

A. 温度補正値 : 25,000×0.0000115×(30-20) = 2.88mm

張力補正値 : $(150-100)\times25,000\div(206,000\times2.34)=2.59$ mm たるみ補正値 : $(-)(0.000187^{\circ}\times25,000^{\circ})\div(24\times150^{\circ})=-1.01$ mm

補正値合計 : (+2.88) + (+2.59) + (-1.01) = **4.46**mm 補正後の正しい距離: 25,000 + (+4.46) = **25,004.46**mm

注) 巻尺の器差補正は考慮しておりません